ExamZ24.net
2 S o T T 20E% ok

-The fastest and guaranteed way to certy now!

https://exam24.net/

http://exam24.net/

Exam Number/Code:70-761

Exam Name: Querying Data with
Transact-SQL

Version: Demo

You create a table named Products by running the following Transact-SQL statement:

CREATE TABLE Products |
ProductlID int IDENTITY(1l,1) NOT NULL PRIMARY KEY,
ProductName nvarchar(100) NULL,
UnitPrice decimal (18, 2) NOT NULL,
UnitsinStock int NOT KULL,
UnitsOnOrder int NULL

You have the following stored procedure:

CREATE PRCCEDURE InssrcPFroduct
EPraductName nvarechar(100),
@UnitPrice decimal(ls,2),
gUnicsinStock int,
gUnitsOnOrder int

AS

BEGIN
INSERT INTO Products{Productdame, ProductPrice, ProductsInStock, Productalnlrder)
VALUES (@ProductName, @UnitPrice, @UnitsInStock, @UnitsOnOrdsr)

END

You need to modify the stored procedure to meet the following new requirements:
Insert product records as a single unit of work.

Return error number 51000 when a product fails to insert into the database. If a product
record insert operation fails, the product information must not be permanently written to
the database.

Solution: You run the following Transact-SQL statement:

ALTER FROCEDURE InsertProduct
fProductliame nvarchar(l00),
gUnicPrice dacimal (18,2).
EUnicsInStock int,
fUnicsOnOrdes int

o

-y

e

SET XACT ABORT ON
BEGIN IRY
BEGIN TRANSACTION

Froducts (Productlame, Frodu ice, ProduccsinStock, ProductalnCrder)

@Productiiane, @UnitPrice, BUnicalnStock, iTnivainizder)
COMMIT TRANSARCTION

END TRY
BEGIN CATCH
IF XACT STATE(] <> O ROLLBACK TRAMSACIION

THROW 51000, 'The product could not be created.', 1

Does the solution meet the goal?

A. Yes
B. No

Answer: B

Explanation:

With X_ABORT ON the INSERT INTO statement and the transaction will be rolled back
when an error is raised, it would then not be possible to ROLLBACK it again in the IF
XACT_STATE() <> O ROLLBACK TRANSACTION statement.

Note: A transaction is correctly defined for the INSERT INTO ..VALUES statement, and if
there is an error in the transaction it will be caughtant he transaction will be rolled back,
finally an error 51000 will be raised.

Note: When SET XACT_ABORT is ON, if a Transact-SQL statement raises a run-time
error, the entire transaction is terminated and rolled back.

XACT_STATE is a scalar function thatreports the user transaction state of a current
running request.

XACT_STATE indicates whether the request has an active user transaction, and whether
the transaction is capable of being committed.

The states of XACT_STATE are:

0 There is no active user transaction for the current request.

1 The current request has an active user transaction. The request can perform any actions,
including writing data and committing the transaction.

2 The current request has an active user transaction, but an error hasoccurred that has
caused the transaction to be classified as an uncommittable transaction.

References:

https://msdn.microsoft.com/en-us/library/ms188792.aspx
https://msdn.microsoft.com/en-us/library/ms189797.aspx

Question 2
You create a table named Products by running the following Transact-SQL statement:

CREATE TABLE Products |
roductID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ProductName nvarchar(100) NULL,
UnitPrice decimal (18, 2) NOT NULL,
UnitsinStock int NOT KULL,
UnitsOnOrder int NULL

You have the following stored procedure:

CREATE PRCCEDURE InssrcPFroduct
EPraductName nvarechar(100),
@UnitPrice decimal(ls,2),
gUnicsinStock int,
gUnitsOnOrder int

AS

BEGIN
INSERT INTO Products{Productdame, ProductPrice, ProductsInStock, Productalnlrder)
VALUES (@ProductName, @UnitPrice, @UnitsInStock, @UnitsOnOrdsr)

END

You need to modify the stored procedure to meet the following new requirements:
Insert product records as a single unit of work.

Return error number 51000 when a product fails to insert into the database. If a product
record insert operation fails, the product information must not be permanently written to
the database.

Solution: You run the following Transact-SQL statement:

ALTER FROCEDURE InsertProducc
€ProductMame nvarchar (100},
§UnitPrice decimal (15,2),
EnitsInStock int,
#UnizsOnOrder inc
AS

EGIN

BEGIN TRY
EGIN TRANSACTION

INSERT INTO Froducts (Productiame, Frodu

&, ProductsinStock, ProductsOnOrder)

ctPric
VALUES (RFroductName,8UnitPrice,8Unit=InStock, AUnitsOnlrder)

COMMIT TRANSACTION
END TRY

BEGIN CATCH

IT BETRANCOUNT » U ROLLEACK

IF BRERROR = S1000
THROW
END CATCH

ikl

Does the solution meet the goal?

A. Yes
B. No

Answer: B

Explanation:

PR Teg g wi |

A transaction is correctly defined for the INSERT INTO ..VALUES statement, and if there
is an error in the transaction it will be caught ant he transaction will be rolled back.
However, error number 51000 will not be returned, as it is only used in an IF @ERROR =

51000 statement.

Note: @@TRANCOUNT returns the number of BEGIN TRANSACTION statements that

have occurred on the current connection.

References: https://msdn.microsoft.com/en-us/library/ms187967.aspx

Question 3

You create a table named Products by running the following Transact-SQL statement:

CREATE TABLE Products |
ProductlID int IDENTITY(1l,1) NOT NULL PRIMARY KEY,
roductName nvarchar(l100) NULL,
UnitPrice decimal (18, 2) NOT NULL,
UnitsinStock int NOT KULL,
UnitsOnOrder int NULL

You have the following stored procedure:

CREATE PRCCEDURE InssrcPFroduct
EPraductName nvarechar(100),
RUnitPrice decimal(ls,2),
gUnicsinStock int,
gUnitsOnOrder int

AS

BEGIN
INSERT INTO Products{Productdame, ProductPrice, ProductsInStock, Productalnlrder)
VALUES (@ProductName, @UnitPrice, @UnitsInStock, @UnitsOnOrdsr)

END

You need to modify the stored procedure to meet the following new requirements:
Insert product records as a single unit of work.

Return error number 51000 when a product fails to insert into the database. If a product
record insert operation fails, the product information must not be permanently written to
the database.

Solution: You run the following Transact-SQL statement:

ALTER PROCEDURE InsertProduct
fProduct¥ame nvarchar (1L00]),
BUnitPrice decimal (18,2},
f0nitaInStoclk int,
@UnitsOnOrder int

AS
BEGIN
BEGIN TRY
INSERT INTO Products(ProductMame; PreductPrice, Productsln3tock, ProductaCnlOrder)
VALUES (@ProductName, #UnitPrice, #UnitsInStock, UnitsOndrder)
END TRY
BEGIN CRICH
THROW 51000, “IThe product could not be crested.’, 1
END CAICH
END

Does the solution meet the goal?

A. Yes
B. No

Answer: A

Explanation:

If the INSERT INTO statement raises an error, the statement will be caught and an error
51000 will be thrown. In this case no records will have been inserted.

Note:

You can implement error handling for the INSERT statement by specifying the statement
ina TRY...

CATCH construct.

If an INSERT statement violates a constraint or rule, or if it has a value incompatible with
the data type of the column, the statement fails and an error message is returned.
References: https://msdn.microsoft.com/en-us/library/ms174335.aspx

Question 4
You create a table named Customer by running the following Transact-SQL statement:

CREATE TABLE Cuatomer
CustomerlD int IDENTITY (1,1
FirstName varchar (50) NULL,
LastName wvarchar(50) NOT NULL,

DateQfBirth date NOT NULL,

CreditlLimit money CHECK (CreditlLimit < 10000},
TownlD int HULL REFERENCES dbo.Town (TownlD),
Createdlate datetims DEFAULT (Getdate())

PRIMARY EEY,

You must insert the following data into the Customer table:

Record :;:_:: Last name D;::: f ﬁ:::: Town ID Created date
Record 1 | Yvonne McKay 1984-05-25 | 9,000 no tf.frwn curre.nt date
details and time
Record2 | Jossef Goldberg | 1995-06-03 [5,500 | "° *O"" GHRVEE Cabe
details and time

You need to ensure that both records are inserted or neither record is inserted.

Solution: You run the following Transact-SQL statement:

INSERT INTO Customer (FiratlHame, Lastlame, DateOfBirth, Creditlimie, CreatedDate)
VALUES (*Yvonone', *McKay', “1384-05-25", 5000, GEIDATLE())

INSERT INTC Custcmer (FirstName, LasctName, DateCOfBirth, Creditlimir, CreatedDate)
VALUES (*Jossef’, ‘Goldberg’, *1935-06-037, 5500, GETDATE())

GO

Does the solution meet the goal?

A. Yes
B. No

Answer: B

Explanation:
As there are two separate INSERT INTO statements we cannot ensure that both or
neither records are inserted.

Question 5
You create a table named Customer by running the following Transact-SQL statement:

CREATE TABLE Cuatomer
CustomerlD int IDENTITY(l,1) PRIMARY EEY,
FirstName varchar (50) NULL,
LastName varchar (S50) NOT NULL,
DateQCfBirth date NOT NULL,
reditlimit money CHECK (Creditlimit < 10000},
TownlD int HULL REFERENCES dbo.Town (TownlD),
CreatedDate datetime DEFAULT (Getdate())

You must insert the following data into the Customer table:

First Date of Credit
Record Last name : z Town ID Created date
name Birth limit
no town current date
Record1 | Yvonne McKay 1584-05-25 | 9,000 : ;
details and time
no town current date
Record 2 | lossef Goldberg 1995-06-03 | 5,500 ;
details and time
You need to ensure that both records are inserted or neither record is inserted.
Solution: You run the following Transact-SQL statement:
IRSERT INTO Customer (FirstHame, LastMame, DateQfBirth, Creditlimit, TownlD, CreatedDate)
VALUES ('Yvonne', ‘McKay’, '1984-05-257, 5000, NULL, GETDAIE())
IKSERT INTO Custocmer (FirstHame, lastBHame, DateQfBirth, Creditlimit, TownlID, CreatedDate)
VALUES (*Jossef’, ‘Goldberg’, “1995-06-03', 5500, NULL, GETIDATE())
=0

Does the solution meet the goal?

A. Yes
B. No

Answer: B

Explanation:

As there are two separate INSERT INTO statements we cannot ensure that both or

neither records are inserted.

Question 6

You create a table named Customer by running the following Transact-SQL statement:

CRERTE

TABLE Customer |
CustomerID int IDENTITY(1,1) PRIMARY KEY,

FirstName wvarchar (E0)
LastName varchar (S50) NOT NULL,
DateQCfBirth date NOT NULL,

CreditlLimit money CHECE

NULL,

(Creditlimit < 10000},

TownlD int HULL REFERENCES dbo.Town (TownlD),

CreatedDate datetime DEFAULT (Getdate())

You must insert the following data into the Customer table:

Record :;:_:‘; Last name D;::: f ﬁ::::t Town ID Created date
Record1 | Yvonne | McKay 1984.05-25 [9,000 | "° "OW" Gisvent duse
details and time
Record 2 | Jossef Goldberg | 1995.06-03 | 5,500 | "© tOWN Cusvent date
details and time

You need to ensure that both records are inserted or neither record is inserted.

Solution: You run the following Transact-SQL statement:

INSERT IHIO dbw.Customer (FirstHame, LastMames, DetelfBirth, CreditLamit)
VALUES ({('Y¥vonne', ‘McEay', ‘'1984-05-25', S000); (“"Jogsef', ‘Goldberg®, ‘1995-05-037, 5500)

Does the solution meet the goal?

A. Yes
B. No

Answer: A

Explanation:

With the INSERT INTO..VALUES statement we can insert both values with just one
statement. This ensures that both records or neither is inserted.
References:https://msdn.microsoft.com/en-us/library/ms174335.aspx

Question 7
You have a database that tracks orders and deliveries for customers in North America.
The database contains the following tables:

Sales.Customers

Column Data type Notes
Customer|D int primary key
CustomerCategoryid - foreign key to the Sales.CustomerCategories
table
PostalCitylD int foreign key to the Application.Cities table
DeliveryCitylD int foreign key to the Application.Cities table
AccountOpenedDate datetime does not allow new values
StandardDiscountPercentage | int does not allow new values
CreditLimit decimal{18,2) | null values are permitted
IsOnCreditHold bit does not allow new values
DeliveryLocation geography does not allow new values
does not allow new values
Phonetiumber fyarchaniay) data is formatted as follows: 425-555-0187

Application.Cities

Column Data type Notes
CitylD int primary key
LatestRecordedPopulation | bigint null values are permitted

Sales.CustomerCategories

Column Data type Notes
CustomerCategorylD int primary key
CustomerCategoryName nvarchar{50) does not allow null values

The company's development team is designing a customer directory application. The
application must list customers by the area code of their phone number. The area code is
defined as the first three characters of the phone number.

The main page of the application will be based on an indexed view that contains the area
and phone number for all customers.

You need to return the area code from the PhoneNumber field.

Solution: You run the following Transact-SQL statement:

CREATE FUNCTION AreaCode |
@phoneNumber nvarchar (20)

)

RETURNS

TASLE

WITH SCHEMABINDING

ng

o u
™ L
I~}
=
2
-

FROM STRING SPLIT (@phonsNumber, ‘-')

Does the solution meet the goal?

A. Yes
B. No

Answer: B

Explanation:
The function should return nvarchar(10) and not a TABLE.

References: https://sqlstudies.com/2014/08/06/schemabinding-what-why/

Question 8

VALUE as AreaCode

You have a database that tracks orders and deliveries for customers in North America.

The database contains the following tables:

Sales.Customers

Column Data type Notes
Customer|D int primary key
CustomerCategoryid - foreign key to the Sales.CustomerCategories
table
PostalCitylD int foreign key to the Application.Cities table
DeliveryCitylD int foreign key to the Application.Cities table
AccountOpenedDate datetime does not allow new values
StandardDiscountPercentage | int does not allow new values
CreditLimit decimal{18,2) | null values are permitted
IsOnCreditHold bit does not allow new values
DeliveryLocation geography does not allow new values
does not allow new values
Phonetiumber fyarchaniay) data is formatted as follows: 425-555-0187

Application.Cities

Column Data type Notes
CitylD int primary key
LatestRecordedPopulation | bigint null values are permitted

Sales.CustomerCategories

Column Data type Notes
CustomerCategorylD int primary key
CustomerCategoryName nvarchar{50) does not allow null values

The company's development team is designing a customer directory application. The
application must list customers by the area code of their phone number. The area code is
defined as the first three characters of the phone number.

The main page of the application will be based on an indexed view that contains the area
and phone number for all customers.

You need to return the area code from the PhoneNumber field.

Solution: You run the following Transact-SQL statement:

CREATE FUNCTION AreaCode |
EphoneNumber nvarchar(20)

)

EETURNS nvarchar (10}

AS

BEGIN
DECLARE Barealode nvarchar (max)
SELECT TOP 1 @areaCode = VALUE FROM STRING SPLIT (EphoneNumber, ‘=')
RETURN faresaCode

END

Does the solution meet the goal?

A. Yes
B. No

Answer: B

Explanation:
As the result of the function will be used in an indexed view we should use

schemabinding.
References: https://sqlstudies.com/2014/08/06/schemabinding-what-why/

Question 9
You have a database that tracks orders and deliveries for customers in North America.
The database contains the following tables:

Sales.Customers

Column Data type Notes
Customer|D int primary key
CustomerCategoryid - foreign key to the Sales.CustomerCategories
table
PostalCitylD int foreign key to the Application.Cities table
DeliveryCitylD int foreign key to the Application.Cities table
AccountOpenedDate datetime does not allow new values
StandardDiscountPercentage | int does not allow new values
CreditLimit decimal{18,2) | null values are permitted
IsOnCreditHold bit does not allow new values
DeliveryLocation geography does not allow new values
does not allow new values
Phonetiumber fyarchaniay) data is formatted as follows: 425-555-0187

Application.Cities

Column Data type Notes
CitylD int primary key
LatestRecordedPopulation | bigint null values are permitted

Sales.CustomerCategories

Column Data type Notes
CustomerCategorylD int primary key
CustomerCategoryName nvarchar{50) does not allow null values

The company's development team is designing a customer directory application. The
application must list customers by the area code of their phone number. The area code is
defined as the first three characters of the phone number.

The main page of the application will be based on an indexed view that contains the area
and phone number for all customers.

You need to return the area code from the PhoneNumber field.

Solution: You run the following Transact-SQL statement:

CREATE FUNCTION AreaCode (

fphoneNumber nvarchar (20)

)

RETURNS nvarchar(10)
WITH SCHEMABINDING

AS
BEGIN

DECLARE fareaCode nvarchar (max)
SELECT €areaCode = value FROM STRING_SPLIT (éphoneNumber, ‘-')
RETURN far=aCods

END

Does the solution meet the goal?

A. Yes
B. No

Answer: B

Explanation:

We need SELECT TOP 1 @areacode =.. to ensure that only one value is returned.

Question 10

You query a database that includes two tables: Project and Task. The Project table
includes the following columns:

Column name Data type Notes
Projectld int This is a unique identifier for a project.
ProjectName varchar(100)
StartTime datetime2(7)
EndTime datetime2(7) A null value indicates the project is not finished yet.
Userld int Identifies the owner of the project.

The Task table includes the following columns:

Column name Data type Notes
Taskid int This is a unique identifier for a task.
TaskName varchar(100) A nonclustered index exists for this column.
ParentTaskld int Each task may or may not have a parent task.

2 A null value indicates the task is not assigned to a
Projectld int & ;

specific project.

StartTime datetime2(7)
EndTime datetime2(7) A null value indicates the task is not completed yet.
Userid int Identifies the owner of the task.

You plan to run the following query to update tasks that are not yet started:

UPDATE Task SET StartTime = GETDATE() WHERE StartTime IS NULL

You need to return the total count of tasks that are impacted by this UPDATE operation,
but are not associated with a project.

What set of Transact-SQL statements should you run?

A

DECLARE @startedTasks TABLE(ProjectId int)
UPDATE Task SET StartTime = GETDATE() OUTPUT deleted.ProjectId INTO @startedTasks WHERE StartTime is NULL
SELECT COUNT(*) FROM @startedTasks WHERE ProjectId IS NOT NULL

DECLARE @startedTasks TABLE(TaskId int, Projectld int)
UPDATE Task SET StartTime = GETDATE() OUTPUT deleted.Taskld, deleted.Projectld INTO E@startedTasks

WHERE StartTime is NULL

SELECT COUNT(*) FROM @startedTasks WHERE Projectld IS NULL

c

DECLARE @startedTasks TABLE (TaskId int)
UPDATE Task SET StartTime = GETDATE() OUTPUT inserted.TaskId, INTO @startedTasks WHERE StartTime is NULL
SELECT COUNT(*) FROM @startedTasks WHERE TaskId IS NOT NULL

D

DECLARE @startedTasks TABLE (TaskId int)
UPDATE Task SET StartTime = GETDATE() OUTPUT deleted.TaskId, INTO @startedTasks WHERE StartTime is NULL
SELECT COUNT (*) FROM @startedTasks WHERE TaskId IS NOT NULL

A. Option A
B. Option B
C. Option C
D. Option D

Answer: B

Explanation:

The WHERE clause of the third line should be WHERE ProjectID IS NULL, as we want to
count the tasks that are not associated with a project.

